Multidirectional strain-induced thermoelectric figure of merit enhancement of zigzag bilayer phosphorene nanoribbons

Author:

Sodagar Shima,Karbaschi HosseinORCID,Soltani Morteza,Amini MohsenORCID

Abstract

Abstract We have theoretically investigated strain-induced thermoelectric power generation properties of zigzag bilayer phosphorene nanoribbon. Since energy bandgap size and edge state dispersion play a significant role in the thermoelectric properties of such a structure, we have investigated the effect of strain in different directions on these two quantities. We have shown that by applying both tensile and compressive strains in different directions, it is possible to properly tune the energy bandgap size and adjust the edge state dispersion. We have also selected strain combinations in different directions that simultaneously increase the size of the energy bandgap and decrease the dispersion of the edge state. It has shown that with such combinations of strains, the maximal figure of merit has been improved by about two times compared to the pristine case.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3