Non-polynomial spline method for computational study of reaction diffusion system

Author:

Haq Mehboob UlORCID,Haq Sirajul

Abstract

Abstract This work addresses an efficient and new numerical technique utilizing non-polynomial splines to solve system of reaction diffusion equations (RDS). These system of equations arise in pattern formation of some special biological and chemical reactions. Different types of RDS are in the form of spirals, hexagons, stripes, and dissipative solitons. Chemical concentrations can travel as waves in reaction-diffusion systems, where wave like behaviour can be seen. The purpose of this research is to develop a stable, highly accurate and convergent scheme for the solution of aforementioned model. The method proposed in this paper utilizes forward difference for time discretization whereas for spatial discretization cubic non-polynomial spline is used to get approximate solution of the system under consideration. Furthermore, stability of the scheme is discussed via Von-Neumann criteria. Different orders of convergence is achieved for the scheme during a theoretical convergence test. Suggested method is tested for performance on various well known models such as, Brusselator, Schnakenberg, isothermal as well as linear models. Accuracy and efficiency of the scheme is checked in terms of relative error (E R ) and L norms for different time and space step sizes. The newly obtained results are analyzed and compared with those available in literature.

Publisher

IOP Publishing

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3