Surface DBD plasma microbubble reactor for degrading methylene blue

Author:

Jakob HenrikeORCID,Paliwoda MatthewORCID,Rovey Joshua L,Kim MinkwanORCID

Abstract

Abstract Water contaminants such as endocrine inhibitors, pharmaceuticals, and chlorine treatment by-products are only recently being identified as significant hazards to human health. Since current chlorine treatment does not address many of these compounds and conventional ozone processing is not seen as an economic alternative, water adjacent plasma treatment has been investigated as a more efficient and effective decontamination method. This work investigates the use of a surface dielectric barrier discharge electrode as a reduced discharge voltage portable plasma water treatment method. The gas passes through holes in the electrodes, normal to the discharge surface, so that the entire cross-sectional area of the feed gas is exposed to plasma, prior to passing through a hydrophobic filter and bubbling into the water. The decontamination effectiveness is quantified by measuring the degradation of methylene blue with absorption spectroscopy. Studies of the different processing parameters (treatment time, solution volume, initial concentration, electrode-filter distance, and gas flow rate) clarify the potential range of performance for this plasma treatment configuration. The setup has a yield energy of 0.45 g/kW·h at 25 ml of 1 mg/100 ml methylene blue treated over 5 minutes for a 92% degradation. The degradation rate is dependent upon the volume ratio of air to methylene blue solution, suggesting a first order chemical reaction process. The reaction rate is increased by increasing the quantity of either reactant. There is no change in the degradation between when the plasma is 1 mm or 1 cm from the water surface.

Funder

Defence Science and Technology Laboratory

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference46 articles.

1. Pharmaceuticals and endocrine disrupting compounds in u.s. drinking water;Benotti;Environ. Sci. Technol.,2009

2. Plastics, edcs & health a guide for public interest organizations and policy-makers on endocrine disrupting chemicals & plastics;Flaws;Tech. Rep.,2020

3. Endocrine disruptors in water and their effects on the reproductive system;Gonsioroski;Int. J. Mol. Sci.,2020

4. Review of plasma-based water treatment technologies for the decomposition of persistent organic compounds;Takeuchi;Japan. J. Appl. Phys.,2021

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3