Effect of substrate type on the physical properties of thermally evaporated CdS thin films for CdTe/CdS solar cells applications

Author:

Arashti Maryam Gholizadeh,Hasani Ebrahim,Kamalian MonirORCID,Habashi Lida Babazadeh

Abstract

Abstract Cadmium Sulfide (CdS) thin films were grown on crystal quartz as a nonconductive substrate, and Indium tin oxide (ITO) and Fluorine doped tin oxide (FTO) as transparent conducting oxide (TCO) films. The thin films with the thickness of 100 nm were fabricated at 150 °C under the pressure of 2 × 10−5 mbar using the thermal evaporation method. The x-ray diffraction (XRD) results showed that all grown CdS films had cubic crystal structures with the preferred orientation (111) and a crystallite size between 11.72 nm and 14.84 nm. Raman spectra also revealed an increase in peak intensity and shift toward single-crystal mode in the films grown on TCOs. The homogeneous and uniform surfaces of CdS films were shown in scanning electron microscopy (SEM) images. The optical parameters of the deposited CdS thin films such as absorption, transmission, refractive index, extinction coefficient, and real and imaginary parts of dielectric constant, were improved. The energy band gap of the films was decreased from 2.45 eV for the CdS/quartz film to 2.36 eV for the CdS/FTO one. The key electrical parameters of the deposited films on TCO, such as conductivity, mobility and carrier concentration, as calculated by the Hall effect measurement system, were enhanced too. High efficient heterojunction cadmium telluride (CdTe)-based solar cells with the experimentally grown CdS films were designed by SCAPS-1D simulator. The efficiency of the designed cells with CdS/quartz, CdS/ITO, and CdS/FTO layers was obtained to be 19.40%, 21.23%; and 21.16%, respectively. The impact of the CdTe absorber layer thickness and device temperature on the photovoltaic parameters of the simulated cells was then investigated. The optimized cell was obtained for an Au/CdTe/CdS/ITO structure with the efficiency of 22.80% by employing a 3 μm thickness of the CdTe layer at a device temperature of 300 K.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3