Influence of ‘period four’ transition metal doping in graphene on adsorption and transduction characteristics for CO gas- A detailed ab-initio perspective

Author:

Tiwari Aditya,Bahadursha Naresh,Chakraborty Sudipta,Kanungo SayanORCID

Abstract

Abstract This work analyses the comparative effects of period-four transition metal (TM) dopants for CO molecular adsorption on the monolayer Graphene (Gr) supercell using the density functional theory (DFT) based ab initio method for the first time. Ten different TM dopant species (Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cr, Zn) have been incorporated and extensively studied in the context of Carbon Monoxide (CO) adsorption. The study elaborates on the effects of metallic doping in Gr on structural stability, electronic properties, adsorption strength, transduction efficacy, and CO recovery time. The study reveals that introducing each period-four TM dopant in the Gr lattice changes the semi-metallic nature, wherein distinct modulations in the energy band structure and the total density of state profiles can be observed after CO adsorption in each doped Gr matrix. The C atom of the polar CO molecule preferentially adsorbed on the doped TM, forming physical C-X (X: metal) bonds and resulting in slight vertical displacement of the dopant towards adsorbed CO. The results exhibit that depending on the strength of CO adsorption, the metallic dopants can be placed in the following order: Ti > V > Cr > Mn > Fe > Co > Ni > Cu > Zn > Sc, with a significant improvement in charge transfer during CO adsorption after Sc, Co, Ni, V, and Zn doping in Gr. Specifically, the Ni, Zn, and Sc-doped Gr ensures an efficient trade-off between adsorption stability and recovery time with high selectivity in CO2 and N2 environments.

Funder

Birla Institute of Technology and Science, Pilani

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3