Renormalization formalism for superconducting phase transition with inner-Cooper-pair dynamics

Author:

Su YuehuaORCID,Wu Hongyun,Cao Kun,Zhang ChaoORCID

Abstract

Abstract As charge carrier of the macroscopic superconductivity, the Cooper pair is a composite particle of two paired electrons, which has both center-of-mass and inner-pair degrees of freedom. In most cases, these two different degrees of freedom can be well described by the macroscopic Ginzburg-Landau theory and the microscopic Bardeen-Cooper-Schrieffer (BCS) theory, respectively. Near the superconducting phase transition where the Cooper pair is fragile and unstable because of the small binding energy, there are non-trivial couplings between these two different degrees of freedom due to such as finite energy and/or momentum transfer. The non-trivial couplings make the original derivation of the Ginzburg-Landau theory from the BCS theory fail in principle as where these two different degrees of freedom should not be decoupled. In this article, we will present a renormalization formalism for an extended Ginzburg-Landau action for the superconducting phase transition where there is finite energy transfer between the center-of-mass and the inner-pair degrees of freedom of Cooper pairs. This renormalization formalism will provide a theoretical tool to study the unusual dynamical effects of the inner-pair time-retarded physics on the superconducting phase transition.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference44 articles.

1. Bound electron pairs in a degenerate Fermi gas;Cooper;Phys. Rev.,1956

2. Microscopic theory of superconductivity;Bardeen;Phys. Rev.,1957

3. Theory of superconductivity;Bardeen;Phys. Rev.,1957

4. Interactions between electrons and lattice vibrations in a superconductor;Eliashberg;Sov. Phys. JETP,1960

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3