Effects of nanomagnesia and polypropylene-graft-maleic anhydride on the dielectric breakdown properties of polypropylene/ethylene propylene diene monomer blend

Author:

Johari Nur AtikahORCID,Lau Kwan YiewORCID,Abdul Malek Zulkurnain,Mohd Esa Mona Riza,Ching Kuan YongORCID,Talib Mohd Aizam

Abstract

Abstract Thermoplastic polypropylene (PP) has garnered a significant attention in power cable insulation research because of its exceptional thermal tolerance and dielectric properties. Due to its poor impact strength at room temperature, PP has been blended with various elastomers, including ethylene-propylene-diene monomer (EPDM), to improve the mechanical stiffness of the final material. This, however, comes with compromised dielectric properties of the material. Recently, the addition of nanofillers to polymers has demonstrated promising properties that can be tailored for various dielectric applications, provided that nanofiller and polymer interactions are appropriately formulated. Nevertheless, the effect of nanostructuration in PP/elastomer blends, especially from the perspective of dielectrics, have yet to be systematically explored. In the current work, magnesia (MgO) nanofiller is added to a model PP/EPDM blend system to determine the effect of MgO on the breakdown properties of PP/EPDM. The results show that adding 0.5 wt% of MgO to PP/EPDM reduces the AC and DC breakdown strengths by 7% and 16%, respectively. As the amount of MgO increases to 3 wt%, the AC and DC breakdown strength reduces further by 25% and 29%, respectively. Significantly, appropriate modification of the nanocomposites with polypropylene-graft-maleic anhydride (PP-g-MAH) can result in 5% higher breakdown strength of the nanocomposites with respect to comparable nanocomposites without modification. The mechanisms surrounding these breakdown effects are discussed with the aid of materials structure interpretations. Overall, the results demonstrate that appropriate modification of nanocomposites with PP-g-MAH is crucial in tailoring breakdown properties of PP blend nanocomposites.

Funder

Ministry of Higher Education Malaysia

Universiti Teknologi Malaysia

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3