Electronic energy levels and wave-functions evolution from 3-D to 2-D of a hydrogen atom confined by two parallel planes

Author:

Cabrera-Trujillo RORCID

Abstract

Abstract The compression of an atom produced by two planes induces a change in its electronic structure that evolves from a free atom in 3-D to a 2-D atom. This behavior is of importance in low-dimensional materials and high compression produced by an anvil cell. In this work, we study the evolution of the energy levels and electronic wave-functions of a hydrogen atom placed between two impenetrable planes as a function of the inter-plane separation through a numerical approach. As the inter-plane separation is reduced, the electron motion is restricted along the direction normal to the planes, similar to a particle in a box, while leaving the electron to move unrestricted along the planes, thus, breaking the spherical geometry of the H atom caused by the planes’ compression. The energy levels evolve from 3-D, described by nlm quantum numbers to a 2-D described by n ml , where l is the quantum number for a particle in a box along the z direction and n is the principal quantum number of the 2-D atom radial direction. We evaluate the energy levels from 3-D to 2-D and the radial average distance 〈ρ〉 in cylindrical coordinates, as a function of the inter-plane separation D along the z-direction. We find that as the inter-plane separation is reduced, the angular momentum quantum number l merges to the z-component of the angular momentum and it produces two branches, a symmetric for l-even and one anti-symmetric for l-odd, connected to a particle in a box quantum number l along the z-axis with implications in the atom photo-luminescence, resulting from the symmetry of the system. Furthermore, states with l-odd merge with states with l-even, as they have the same energy and average distance when D → 0. We provide an Aufbau principle for it. Our results agree to the analytical solutions at the 3-D and 2-D limiting cases.

Funder

Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3