Abstract
Abstract
Because of the demand for low-cost optical trapping small particles without directly touching in subwavelength volume, a liquid-core metal-cladding waveguide (LCMW) structure was put forward, and it retained all the merits of MCW, such as free space coupling, a large detection area, and polarization independence. LCMW was used for optical trapping of SiO2 colloid particles. The reflectivity of the guiding layer was monitored to investigate the factors influencing the self-assembly speed of the SiO2 particles (time for the reflectivity to reach a stable state). The results demonstrate that a smaller ultimate reflectivity of light, longer light-off time, or a higher sample refractive index increases the required optical trapping time for the SiO2 colloid particles to reach a stable state.
Funder
Natural Science Foundation of Jiangsu Province
National Natural Science Foundation of China
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献