Abstract
Abstract
This study compared ordinary Portland cement (OPC) and Fine Aggregate Graded Polymer (FAGP) samples mixed with 0%, 5%, 10%, and 15% barium sulfate (BaSO4). Theory using the XCOM program and experiments using x-ray fluorescence (XRF) within a specified energy range of 16–25 keV were used to calculate the samples’ mass attenuation coefficients. The comparison involved calculating the linear attenuation coefficients (μ/ρ) and attenuation coefficients (μ) of the samples. Both theoretical and experimental results show that the FAGP containing 15% BaSO4 at 16.61 keV has the best attenuation. The findings show that BaSO4 improves radiation shielding. A negative association was found between the attenuation coefficient (μ) and the energy level of radiated radiation. The analysis also found significant concordance between experimental and theoretical methods. In conclusion, the XCOM program had slightly higher mass attenuation coefficients, especially at lower energy levels.