Design of an agile optical switcher based on a 1D silver plasmonic nanograting filled with a nonlinear Kerr material

Author:

Rashidi ArezouORCID,Hatef Ali

Abstract

Abstract In this paper, we investigate the nonlinear optical response characteristics of a metallic nanograting with nonlinear Kerr media within its slits using the finite element method. The proposed nanograting system is illuminated by a nanosecond Gaussian pulse laser under normal incidence and the electric filed pointing across the slits. The results show a perfect linear absorption at resonance wavelength thanks to the coupling of the surface plasmon resonance (SPR) mode and photon cavity mode. We simulate the transient nonlinear absorption variation of the system when the pulse laser is set up at either resonance or off-resonance wavelengths. The results indicate that the unit linear absorption drastically decreases by increasing the laser fluence around the center of the pulse. Interestingly, one can also enhance the weak linear off-resonance absorption to the value of unit by increasing the pulse laser fluence. The higher the laser fluence, the higher the maximum absorption contrast between linear and nonlinear regimes occurs owing to the nonlinear Kerr effect. Indeed, when the laser fluence reaches a critical value, it can excite the Kerr nonlinearity, which changes the coupling strength of SPR mode and the photon cavity mode leading to the absorption adjustment in the nanograting. These properties indicate the possibility of utilizing the proposed nanograting in dual functional absorber and nonabsorber systems, which make it an appropriate candidate for agile optical switching devices.

Funder

Iran National Science Foundation

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3