A novel approaches to 6th-order delay differential equations in toxic plant interactions and soil impact: beyond newton-raphson

Author:

Dipesh ORCID,Kumar Pankaj

Abstract

Abstract This paper focuses on investigating a 6th-order delay differential equation root within the context of toxic interactions between competing plant populations and their impact on soil dynamics. The study introduces a novel approach for approximating solutions to nonlinear delay differential equations, drawing inspiration from the fundamental principles of Newton-Raphson’s method. This technique leverages the complex root theorem to ensure stability, enabling it to effectively handle widely dispersed roots within dynamic systems. Consequently, this approach holds considerable potential for a diverse array of applications. The analysis introduces time delay into a nonlinear dynamical system and explores the system’s threshold value. At this threshold, the dynamical system’s stability undergoes fluctuations, and observations of hopf bifurcation phenomena are made. The study also successfully identifies both real and complex roots of the dynamical system. Visualization of the dynamic system is accomplished using MATLAB-generated graphical representations. Moreover, this research’s implications extend to the realm of climate action and terrestrial ecosystems, underscoring its significance for promoting a sustainable environment and fostering healthy life on land.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3