Effect of plasma initialization on 3D PIC simulation of Hall thruster azimuthal instability

Author:

Xie Lihuan,Luo Xin,Zhou Zhijun,Zhao YinjianORCID

Abstract

Abstract The lack of understanding of the azimuthal instability and the resulting electron anomalous transport limits further improvement of Hall thrusters. Compared to theoretical and experimental approaches, the numerical particle-in-cell (PIC) simulation is a suitable and powerful tool, which has been widely applied to investigate the azimuthal instability, and great progress has been made in the past decades. However, PIC simulations are intrinsically computationally expensive, and it is realized that the Hall thruster azimuthal instability has a three dimensional nature. Therefore, massive 3D PIC simulation must be carried out to completely reveal the mechanism of the instability. In this paper, the effect of plasma initialization on 3D PIC simulation of Hall thruster azimuthal instability is studied as a starting point. It is found that by initializing with ion density and velocity fitting functions to the steady-state simulation results, a faster convergence can be obtained and the computational time can be reduced by about 1.5 times. Typical fitting functions of ion density, drifting velocity, and temperature are given, and the influence of different initialization profiles is presented.

Publisher

IOP Publishing

Reference25 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3