Quantum effects on the propagation of surface magnetoplasmon polaritons in a graphene-plasmonic structure

Author:

Eid I S,Mohamed B F,Guo BinORCID

Abstract

Abstract We investigate the properties of surface magnetoplasmon polaritons (SMPPs) in a graphene-plasmonic structure which is constructed as a graphene film sandwiched with two semi-infinite dielectrics under a perpendicular configuration. By solving Maxwell equations and quantum magneto-hydrodynamic equations with considering the quantum statistical and quantum diffraction effects, we deduce the dispersion relation of graphene SMPPs (GSMPPs) in detail. We show how the graphene electron density, the external magnetic field, and the dielectric constant, affect the features of the dispersion of GSMPPs in both classical and quantum cases. We find that the quantum effects (QEs) significantly alter the properties of GSMPPs, which are entirely different from those in a classical model. We find that the propagation speed of classical GSMPPs has small increases while the propagation speed of quantum GSMPPs has fast and sharp increases along with the increases in graphene electron density. We further find that the propagation speed decreases gradually by increasing the applied magnetic field in both classical and quantum GSMPPs. Moreover, we also find that the propagation speed of classical GSMPPs has fast decreases tending to zero at large wavenumber while the propagation speed of quantum GSMPPs has slow decreases tending to infinity with increasing the dielectric constant. Our findings elucidate that QEs play a crucial role in the properties of GSMPPs and their response to different parameters.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3