Altered the structural, morphological and optical properties of SbSe thin films through swift heavy ion irradiation

Author:

Singh Harpreet,Singh PalwinderORCID,Singh Kamaljit,Singh FouranORCID,Pratap Singh Abhinav,Kumar AkshayORCID,Thakur AnupORCID

Abstract

Abstract Chalcogenide based phase change materials are gaining attention due to their ability to exhibit expeditious and reversible structural transition from amorphous to crystalline phase. This work included the effect of swift heavy silver (Ag9+) ion-irradiation (120 MeV), at various fluences (5E11, 1E12, 5E12 and 1E13 ions/cm2) on the structural, optical and morphological properties of pristine and annealed (250 ° C) SbSe thin films. The pristine films undergo a structural transition from amorphous to crystalline upon annealing and from crystalline to amorphous upon irradiation of annealed films. Structural transition caused by annealing and ion-irradiation resulted in a drastic change in morphology and optical properties. The annealed films exhibited less transmission than the pristine and irradiated films, which increased with increase in ion-irradiation fluences because of phase transition. After irradiation, the optical band decreased for pristine thin films, because the forbidden gap defect concentration has increased, but increased after irradiating the annealed thin films that may be due to annealing out of dense localized defect states. The significant optical contrast upon phase transition in near infrared region can be utilized for different optoelectronic applications.

Funder

IUAC, New Delhi

University Grants Commission

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3