Electro-optic and thermoelectric reponse of SiP and SiAs for solar and thermal applications

Author:

Asghar Mazia,Waheed Hafiza Sumaira,Shabbir Aima,Ullah HamidORCID,Khan M Junaid IqbalORCID,Anjum FaizaORCID,Noor N A,El-Sheikh Mohamed A,Iqbal M WaqasORCID

Abstract

Abstract Based on first-principles calculations, we investigated the electro-optic and thermoelectric properties of SiX (X = P, As). We find that the SiP (−0.17 eV/atom) is more favorable than SiAs (−0.12 eV/atom) due to higher formation energies. The dynamical stability is calculated from the phonon spectra, and the non-negative frequencies confirms the stable nature of SiX. Our calculated electronic band gap shows the semiconductor nature of the SiP, and SiAs with the band gap values of 2.33 eV, and 2.04 eV, respectively. Interestingly, the SiP possesses a direct band gap, which could be promising for optoelectronic devices. Additionally, we performed calculations by replacing P/As with Se atom, and observed that the semiconducting nature is alter to metallic one. The sharp peaks in the optical spectra confirms the electron transition from valance band to conduction band. The SiX (X = P, As) compound strongly absorbed light of energy 4.0 eV, which suggests it a potential candidate for solar cell applications. Furthermore, the compound exhibited the strong absorption of whole sun spectrum (ultra-violet to infra-red wave length), makes it capable for the applications in optical devices. Additionally, we have computed the thermoelectric properties using Boltztrap code. We have estimated the zT value 0.67 and 0.76 for SiP and SiAs, respectively. Both the SiAs and SiP exhibits a high zT, which could be applicable in the thermoelectric devices. Based on our calculated results, we anticipate that our studied materials could be an encouraging candidate for optical devices and thermoelectric devices.

Publisher

IOP Publishing

Reference64 articles.

1. III–V compound SC for optoelectronic devices;Mokkapati;Mater. Today,2009

2. 21 - Hard thin films: applications and challenges;Mylvaganam,2015

3. Luminescence properties of defects in GaN;Reshchikov;J. Appl. Phys.,2005

4. FP-LAPW calculations of ground state properties for AlN, GaN and InN compounds;Daoudi;International Journal of Nanoelectronics and Materials,2008

5. Phosphide–tetrahedrite Ag6Ge10P12 : thermoelectric performance of a long-forgotten silver-cluster compound;Nuss;Chem. Mater.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3