Large-scale phase retrieval from coded diffraction patterns with electrically tunable lens

Author:

Zhang ChengORCID,Zhang LiruORCID,Wang Meiqin,Zhang Ru,Chen Mingsheng,Wei Sui

Abstract

Abstract General optical detection devices rely on converting photons to electrons (current), and do not allow for direct recording of the phase due to the high oscillation frequency. As so, the missing phase can only be recovered from the intensity measurements. The emerging non-convex phase retrieval algorithm, represented by the Wirtinger Flow (WF) algorithm requires multiple-shot coded diffraction patterns (CDPs) for accurate recovery. To achieve the real-time acquisition for multiple CDPs, this paper proposes a 4f imaging system based on an electrically tunable lens (ETL), which can be used for real-time acquisition of multiple-shot CDPs, and can take the advantages of highspeed, high-resolution, extended depth-of-field, high-sensitivity and low-cost imaging. In this paper, the performance of 4f-ETL based imaging system for phase retrieval with multiple CDPs is compared under different iteration times, different object size, different numbers of masks and different noise levels. Numerical experiments demonstrate the effectiveness and superiority of our proposed ETL-based imaging system, and ETL allows variable-distance focusing of imaging and display systems without mechanical structures, which reduces the mechanical complexity and power consumption, improves acquisition speed.

Funder

National Natural Science Foundation of China

Open Research Fund of Advanced Laser Technology Laboratory of Anhui Province

Natural Science Foundation of Anhui Province

The Major Natural Science Foundation of Higher Education Institutions of Anhui Province

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3