Fault severity recognition in axial piston pumps using attention-based adversarial discriminative domain adaptation neural network

Author:

Shao Yuechen,Chao QunORCID,Xia Pengcheng,Liu Chengliang

Abstract

Abstract Axial piston pumps are the ‘hearts’ of hydraulic systems whose fault recognition is necessary for the safety and reliability of hydraulic equipment. These pumps operate under different operating conditions and the fault recognition model trained at one operating point cannot be applicable at another operating point due to the problem of domain shifts. This paper proposes a transfer learning method for the fault severity recognition of axial piston pumps based on adversarial discriminative domain adaptation fused with a convolutional channel attention module. First, a convolutional neural network is pre-trained with labeled vibration data from the source domain, and a convolutional channel attention module is added to assign weights to different convolution kernels. Second, the trained source model is transferred to the target domain, and its parameters are updated by an adversarial training process between the labeled source data and the unlabeled target data. Finally, vibration data are collected from an axial piston pump at different fault levels under various operating conditions to validate the proposed method. Experimental results indicate that the proposed method achieves an average recognition accuracy of 98.3% and outperforms some other transfer learning methods by a large margin.

Funder

Shanghai Municipal Science and Technology Major Project

Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3