Machine learning-assisted prediction of the electronic features of a Schottky diode interlaid with PVP:BaTiO3 composite

Author:

Azizian-Kalandaragh YasharORCID,Barkhordari AliORCID,Özçelik Süleyman,Altındal Şemsettin

Abstract

Abstract This study employs two Machine Learning (ML) models to predict the electronic current and then analyze the main electronic variables of Schottky diodes (SDs), including leak current (I0), potential barrier height (ΦB0), ideality factor (n), series resistance (Rs), shunt resistance (Rsh), rectifying ratio (RR), and interface states density (Nss). The I-V characteristics are examined for both without and with an interlayer. The polyvinylpyrrolidone (PVP) polymer and BaTiO3 nanostructures are combined to form the nanocomposite interface. The ML algorithms that are employed include the Gaussian Process Regression (GPR) and Kernel Ridge Regression (KRR). The thermionic emission theory is used to gather training data for ML algorithms. Ultimately, the effectiveness of these ML methods in anticipating the electric characteristics of SDs is evaluated by contrasting the predicted and experimental findings in order to identify the optimal ML model. Whereas the GPR algorithm has given values that are closer to the actual values, the ML predictions of fundamental electric variables by practically both algorithms have the best level of agreement with the actual values. Also, the obtained findings indicate that when the nanocomposite interface is used, the amount of I0 and Nss for metal-semiconductor (MS) Schottky diodes reduces and φ B0 increases.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3