Hybrid GRU-CNN bilinear parameters initialization for quantum approximate optimization algorithm

Author:

Xu ZuyuORCID,Cai Pengnian,Shen Kang,Yang Tao,Hu Yuanming,Gong Maogao,Zhu YunlaiORCID,Wu ZuhengORCID,Dai Yuehua,Yang FeiORCID

Abstract

Abstract The Quantum Approximate Optimization Algorithm (QAOA), a pivotal paradigm in the realm of variational quantum algorithms (VQAs), offers promising computational advantages for tackling combinatorial optimization problems. Well-defined initial circuit parameters, responsible for preparing a parameterized quantum state encoding the solution, play a key role in optimizing QAOA. However, classical optimization techniques encounter challenges in discerning optimal parameters that align with the optimal solution. In this work, we propose a hybrid optimization approach that integrates Gated Recurrent Units (GRU), Convolutional Neural Networks (CNN), and a bilinear strategy as an innovative alternative to conventional optimizers for predicting optimal parameters of QAOA circuits. GRU serves to stochastically initialize favorable parameters for depth-1 circuits, while CNN predicts initial parameters for depth-2 circuits based on the optimized parameters of depth-1 circuits. To assess the efficacy of our approach, we conducted a comparative analysis with traditional initialization methods using QAOA on Erdős-Rényi graph instances, revealing superior optimal approximation ratios. We employ the bilinear strategy to initialize QAOA circuit parameters at greater depths, with reference parameters obtained from GRU-CNN optimization. This approach allows us to forecast parameters for a depth-12 QAOA circuit, yielding a remarkable approximation ratio of 0.998 across 10 qubits, which surpasses that of the random initialization strategy and the PPN2 method at a depth of 10. The proposed hybrid GRU-CNN bilinear optimization method significantly improves the effectiveness and accuracy of parameters initialization, offering a promising iterative framework for QAOA that elevates its performance.

Funder

Natural Science Research Project of Anhui

National Natural Science Foundation of China

Educational Committee

Anhui Provincial Natural Science Foundation

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3