Abstract
Abstract
Numerical modelling on functional Sn-based perovskite solar cells (PSCs) has been performed and compared with Pb-based PSCs by using general-purpose photovoltaic device model software. The effect of variation in active layer thickness and various electron transport layers (ETLs), including tin oxide (SnO2), zinc oxide, C60, titanium dioxide, phenyl-C61- butyric acid methyl ester, on the photovoltaic parameters of Sn-based PSCs has been investigated. The active layer thickness was observed to be 500 nm, and SnO2 as ETL material resulted in the most efficient PSC. The optimized Sn-based device with formamidinium tin iodide as perovskite active layer shows promising results with a maximum power conversion efficiency of 24.41% compared to 27.49% for formamidinium lead iodide-based device. Further, other photovoltaic parameters for lead free PSC devices are quite comparable as for lead-based devices, showing the potential of Sn-based perovskite material as a fair candidate to replace toxic Pb-based-PSCs.
Funder
Government of India
the Science & Engineering Research Board (SERB), Department of Science and Technology
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献