Independently tunable concentric graphene ring resonators based ultrathin broadband THz absorber

Author:

Kumar Abhishek,Varshney GauravORCID

Abstract

Abstract An ultrathin structure of graphene-based absorber is implemented and numerically analyzed. The absorber is designed with the usage of graphene ring resonators and graphene reflector in the lower terahertz (THz) frequency ranges. The geometry of the absorber can be implemented with the thickness as small as λ/193; (λ: free space wavelength). A number of resonances is generated using concentric graphene ring resonators which can individually tuned over frequency using chemical potential of graphene for merging and achieving the broad absorption band. An absorption of more than 90% is achieved over the frequency range of 10.34–16.23 THz and more than 80% in the frequency range of 9.89–16.77 THz. The proposed absorber provides the polarization independent geometry with the allowed incident angle up to 50°. The ultrathin geometry of the proposed absorber can provide a way to implement the absorber with broad absorption bandwidth.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3