Dynamic analysis of a fractional-order hyperchaotic system and its application in image encryption

Author:

Shi Qianqian,An Xinlei,Xiong Li,Yang Feifei,Zhang Li

Abstract

Abstract Compared with integer order chaotic systems, fractional order chaotic systems can reflect natural phenomena more accurately, which are more suitable for chaotic cryptosystems. In order to explore the application of fractional order chaotic system in cryptography, a novel fractional order hyperchaotic system is constructed and implemented on DSP platform. More progressively, based on Adomian decomposition method, the dynamic behavior is studied by phase diagram, bifurcation diagram, Lyapunov exponent spectrum and spectral entropy (SE) complexity. It is found that each parameter and order have a large range of intervals that can keep the system in a hyperchaotic state. Therefore, the hyperchaotic sequences generated by the constructed fractional order hyperchaotic system have sufficient randomness and are well suited for applications in secure communications. In addition, a color image encryption scheme is designed based on the fractional order hyperchaotic system and DNA dynamic coding. Firstly, the improved Arnold algorithm is used to scramble the original image, then the column cyclic shift method is applied for secondary scrambling, and finally the pixel value is diffused by DNA sequence operation. The security analysis results indicate that the designed encryption algorithm can not only encrypt images effectively, but also has high security and can resist various common attacks.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3