Unsupervised outlier detection in heavy-ion collisions

Author:

Thaprasop P,Zhou K,Steinheimer JORCID,Herold CORCID

Abstract

Abstract We present different methods of unsupervised learning which can be used for outlier detection in high energy nuclear collisions. This method is of particular interest for heavy ion collisions where a direct comparison of experimental data to model simulations is often ambiguous and it is not easy to determine whether an observation is due to new physics, an incomplete understanding of the known physics or an experimental artefact. The UrQMD model is used to generate the bulk background of events as well as different variants of outlier events which may result from misidentified centrality or detector malfunctions. The methods presented here can be generalized to different and novel physics effects. To detect the outliers, dimensional reduction algorithms are implemented, speciftically the Principle Component Analysis (PCA) and Autoencoders (AEN). We find that mainly the reconstruction error is a good measure to distinguish outliers from background. The performance of the algorithms is compared using a ROC curve. It is shown that the number of reduced (encoded) dimensions to describe a single event contributes significantly to the performance of the outlier detection task. We find that the model which is best suited to separate outlier events requires a good performance in reconstructing events and at the same time a small number of parameters.

Funder

DPST

DAAD

Samson AG

BMBF

NVIDIA Corporation

Suranaree University of Technology

Walter Greiner Gesellschaft

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Anomaly detection in collider physics via factorized observables;Physical Review D;2024-09-09

2. Digital Twins and Civil Engineering Phases: Reorienting Adoption Strategies;Journal of Computing and Information Science in Engineering;2024-09-03

3. Cluster Scanning: a novel approach to resonance searches;Journal of High Energy Physics;2024-06-25

4. Improving new physics searches with diffusion models for event observables and jet constituents;Journal of High Energy Physics;2024-04-18

5. Non-resonant anomaly detection with background extrapolation;Journal of High Energy Physics;2024-04-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3