Plasma-wall interaction studies in W7-X: main results from the recent divertor operations

Author:

Dhard C P,Brezinsek SORCID,Mayer MORCID,Naujoks D,Masuzaki SORCID,Zhao DORCID,Yi R,Oelmann JORCID,Schmid K,Romazanov JORCID,Pardanaud CORCID,Kandler M,Kharwandikar A K,Schlisio GORCID,Volzke O,Grote H,Gao YORCID,Rudischhauser L,Goriaev AORCID,Wauters T,Kirschner AORCID,Sereda SORCID,Wang E,Rasinski MORCID,Dittmar TORCID,Motojima GORCID,Hwangbo DORCID,Kajita S,Balden MORCID,Burwitz V V,Neu RORCID,Linsmeier ChORCID,W7-X Team the

Abstract

Abstract Wendelstein 7-X (W7-X) is an optimized stellarator with a 3-dimensional five-fold modular geometry. The plasma-wall-interaction (PWI) investigations in the complex 3D geometry of W7-X were carried out by in situ spectroscopic observations, exhaust gas analysis and post-mortem measurements on a large number of plasma-facing components extracted after campaigns. The investigations showed that the divertor strike line areas on the divertor targets appeared to be the major source of carbon impurities. After multistep erosion and deposition events, carbon was found to be deposited largely at the first wall components, with thick deposits of >1 μm on some baffle tiles, moderate deposits on toroidal closure tiles and thin deposits at the heat shield tiles and the outer wall panels. Some amount of the eroded carbon was pumped out via the vacuum pumps as volatile hydrocarbons and carbon oxides (CO, CO2) formed due to the chemical processes. Boron was introduced by three boronizations and one boron powder injection experiment. Thin boron-dominated layers were found on the inner heat shield and the outer wall panels, some boron was also found at the test divertor unit and in redeposited layers together with carbon. Local erosion/deposition and global migration processes were studied using field-line transport simulations, analytical estimations, 3D-WallDYN and ERO2.0 modeling in standard magnetic field configuration.

Funder

European Commission

EUROfusion Consortium

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3