Theoretical proposal of electromagnetically induced transparency with a transmissive polarization conversion based on metamaterials

Author:

Gao Cheng-Jing,Dong Han-Qing,Zeng Li,Zhang Hai-FengORCID

Abstract

Abstract The polarization of electromagnetic waves is a key feature in the research areas of modern optics and information science. How to efficiently convert the polarization directions of the EM waves remains to be a challenge in electromagnetically induced transparency (EIT). Here, we theoretically propose a double-layer metamaterial with four symmetric H-shaped resonators, which can achieve the EIT phenomenon and transmissive linear polarization conversion (LPC). The EIT effect is acquired depending on the destructive interference between the electric and magnetic resonances. It is demonstrated that electromagnetic coupling is realized by reducing the structural symmetry of the rotated H-shaped resonators. Furthermore, the value of the maximum transmission coefficient reaches up to 0.900 at 14.202 GHz. The values of the transmission dips are 0.094 at 9.913 GHz and 0.176 at 16.101 GHz, respectively. Moreover, a broad transparency window that is higher than 0.8 can be gained spanning from 11.913 GHz to 15.289 GHz, and the relative bandwidth is 24.8%. Meanwhile, the momentous capability of the LPC is also observed. The transmissive cross-polarization conversion is well observed at 9.913 GHz and 16.101 GHz, where the polarization conversion ratios respectively are 90.2% and 91.8%. In the transparent window, a slow-light effect is highlighted. The values of the maximum group delay and group index respectively approach 91 ns and 1925. The FDTD simulation had been employed to further verify the effectiveness of group delay. In particular, the surface current distributions of the H-shaped resonators are employed to explain the mechanisms of the EIT effect and the transmissive LPC. Surpassing the general EIT structures and polarization converters, the proposed metamaterial is synchronously equipped with the EIT behavior and LPC by one same structure, which has numerous potential applications in communication and antenna technologies.

Funder

Open Research Program in China’s State Key Laboratory of Millimeter Waves

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3