Thermoelastic damping and frequency shift of different micro-scale piezoelectro-magneto-thermoelastic beams

Author:

Guha SayantanORCID,Singh Abhishek KumarORCID,Singh SonamORCID

Abstract

Abstract This work focuses on mathematically studying thermoelastic damping (TED) and frequency shift (FS) in micro-scale piezoelectro-magneto-thermoelastic (PEMT) composite beams composed of BaTiO3-CoFe2O4 combination. Pertaining to cutting-edge micro-technologies implemented in several engineering/scientific applications now-a-days, micro-scale doubly clamped (CC), doubly simply supported (SS), clamped-free (CF), and clamped-simply supported (CS) beams are extensively analyzed. The beams are modeled following the linear Euler-Bernoulli assumptions. The first two eigenvalues of all beams are numerically obtained using Newton-Raphson method. The closed-form expressions of TED and FS of all beams are derived analytically. The influences of Classical dynamical coupled (CL), Lord-Shulman (LS) & Green-Lindsay (GL) thermoelasticity theories, beam dimensions, BaTiO3 volume fraction (Ω f ), and the first two modes (M 1 & M 2) on the TED & FS are meticulously analyzed. Critical thickness (CrTh), critical length (CrLt), and TED (inverse Quality factor) of the beams are numerically obtained and studied. Among other key outcomes, the existence of a critical value of Ω f is established in the range Ω f ∈ [0.5, 0.55], at which, the TED and FS display a drastic change in their natures. The outcomes of the present analysis may find immense potential uses in the design and development of PEMT composite micro-beams, and their applications in several areas such as supporting/stiffening other micro/nanostructures, construction works, sensitive sensing applications, etc.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3