DFT studies on structural stability, vibrational and linear and nonlinear optical properties of low-dimensional zinc sulfide: from the 3D bulk to the 2D monolayer and the 1D zigzag single-walled nanotubes

Author:

Masri Rimel,Larbi TarekORCID,Nehdi Kamel,Doll Klaus,Amlouk Mosbah

Abstract

Abstract Through first-principles calculations, we investigate structural stability, vibrational and linear and nonlinear optical properties of the zinc sulfide (ZnS) in different periodic forms ranging from the 3D bulk to the 2D hexagonal monolayer and their corresponding 1D zigzag single-walled nanotubes. To first order, the electronic wave function on the ground state was constructed using linear combinations of Gaussian-type functions at the DFT/B3LYP level. Then, the Raman and IR spectrum is computed by adopting a Coupled-Perturbed-Hartree–Fock/Kohn–Sham (CPHF/KS) approach. Cohesive, relaxation, and rolling energies, elastic and piezoelectric constants, electronic and nuclear contributions to the polarizability tensor, and nonlinear first and second-order hyperpolarizability tensor components are reported. Our study shows that 3D and 2D forms are stable and show semiconducting behavior, good piezoelectric responses, and fascinating linear and nonlinear optical properties. For 1D single-walled nanotubes, dynamic stability is observed only for the smallest (6,0) nanotubes. For n > 6, imaginary mode frequencies in the simulated IR and Raman spectra indicate dynamic instability. A scanning mode procedure along the largest imaginary vibrational mode is applied in order to determine the stable structures of the largest (14,0), (18,0) and (22,0) ZnS nanotubes. After that, no more imaginary phonon frequencies are detected in their vibrational spectra. Their potential energy surface contains two minima between a saddle point corresponding to a slightly distorted nanotube structure. Our study proves that the zinc sulfide nanostructures possess diverse physical properties so useful for potential applications in nanoelectronics and for nanodevices.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3