Abstract
Abstract
We address the fabrication of nano-architectures by impacting thin layers of amorphous Ge deposited on SiO2 with a Ga+ ion beam and investigate the structural and optical properties of the resulting patterns. By adjusting beam current and scanning parameters, different classes of nano-architectures can be formed, from elongated and periodic structures to disordered ones with a footprint of a few tens of nm. The latter disordered case features a significant suppression of large length scale fluctuations that are conventionally observed in ordered systems and exhibits a nearly hyperuniform character, as shown by the analysis of the spectral density at small wave vectors. It deviates from conventional random fields as accounted for by the analysis of Minkowski functionals. A proof of concept for potential applications is given by showing peculiar reflection properties of the resulting nano-structured films that exhibit colorization and enhanced light absorption with respect to the flat Ge layer counterpart (up to one order of magnitude at some wavelength). This fabrication method for disordered hyperuniform structures does not depend on the beam size. Being ion beam technology widely adopted in semiconductor foundries over 200 mm wafers, our work provides a viable pathway for obtaining disordered, nearly-hyperuniform materials by self-assembly with a footprint of tens of nanometers for electronic and photonic devices, energy storage and sensing.
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献