Research on attitude compensated algorithm for shipborne dynamic weighing

Author:

Xie MeifengORCID,Zhang Ping,Wang Kundong,Lei Huaming

Abstract

Abstract Shipborne dynamic weighing is fundamental in developing marine fishery resources and oceanographic research. It enables the weighing and sorting of seafood, quantitative baiting, and measurement of research sample weights in marine environments. Therefore, developing shipborne dynamic weighing systems is crucial for the integrated exploitation of marine fishery resources. However, research on shipborne dynamic weighing is limited. To address this issue, the study initially analyzed the impact of ship’s attitude information on weighing results. Subsequently, a mathematical model for shipborne dynamic weighing, incorporating compensation factors, was constructed. The compensation factors were determined using the Recursive Least Squares (RLS) method. And then real-time weight estimation was updated using Kalman filtering, effectively mitigating the influence of ship oscillations and swaying on weight measurements. Furthermore, a shipborne dynamic weighing system with a 24-bit analog-to-digital converter (ADC) and STM32F4 processor was developed. The system performance was evaluated by simulating the sail of a ship under different sea conditions on a swing platform. The results demonstrate that the average absolute percentage error of the test meets the requirement of less than 1%, and the standard deviation of the error is less than 1% F. S., which essentially meets the weight measurement requirements of marine dynamic weighing and sorting.

Funder

National Natural Science Foundation of China

the Marine Equipment Foresight Innovation Joint Grants supported by CSSC and SJTU

National Key Research and Development Plan

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on Filtering Algorithm of Vehicle Dynamic Weighing Signal;World Electric Vehicle Journal;2024-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3