Structure, stability and defect energetics of interfaces formed between conventional and transformed phases in Cu–Nb layered nanocomposite

Author:

Saikia Ujjal,Sahariah Munima BORCID,Dutta Biswanath,Pandey RavindraORCID

Abstract

Abstract Layered nanocomposite material having fcc-bcc interface with Kurdjumov-Sachs interface orientation relation has shown great potential as radiation resistant structural material for future fusion energy reactors. The superior radiation resistant properties of this material are attributed to it’s special fcc-bcc interface structure. In this study we have reported a stable interface between conventional bcc phase of Nb and transformed bcc phase of Cu. This bcc-bcc interface is found to be stable from both strain-energy and dynamical stability analysis. We have also shown that the bcc-bcc interface has different defect energetics behaviour compared to previously reported fcc-bcc interface which has a negative impact on the self annihilation property of the material against radiation induced defects. These aspects should be carefully considered in the future design of robust layered material for extreme radiation environment.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3