Application of differential equation in the field of acoustic

Author:

Shafique Sajid,Hina Nazish,Rana Muhammad Afzal,Bano Ambreen

Abstract

Abstract The current study examines a classification of physical problems involving the attenuation and propagation of structure and fluid-coupled acoustic waves in a discontinuous waveguide. In acoustics, the response of sound to boundaries is important. Therefore, it is expected that all of the discontinuous waveguide’s boundaries have the same walls, which can be either hard or impedance. The impedance and hard walls of the waveguide are mathematically modeled with respective Robin and Neumann boundary conditions together with the second-order field differential equation. The physical challenge is solved using the mode-matching (MM) approach, which also matches the continuity criteria for the acoustic pressure and normal velocities at matching connections. Transmission loss and powers scattering graphs against various frequencies and waveguides dimension parameters are shown to evaluate how well the waveguide predicts the sound to enhance or attenuate for both fluid and structure-borne modes incidents. By reconstructing the matching continuity requirements at matching junctions and using the conserved power identity, the accuracy of the derived algebra is confirmed. The current study has significant implications for improving sound quality for audible applications.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3