Abstract
Abstract
Erosion and deposition is modelled with ERO2.0 for a hypothetical full-tungsten ITER for an ELM-free H-Mode baseline deuterium discharge. A parameter study considering seeding impurities (Ne, Ar, Kr, Xe) at constant percentages (0.05% to 1.0%) of the deuterium ion flux is done while neglecting their radiation cooling and core plasma compatibility. With pure deuterium plasma, tungsten main wall erosion is only due to charge exchange deuterium atoms and self-sputtering and there is only minor tungsten divertor sputtering. With a beryllium main wall, beryllium erosion is due to deuterium ions, charge exchange deuterium neutrals and self-sputtering. For this case, tungsten in the divertor is eroded by beryllium ions and self-sputtering. The simulations for full-tungsten device including seeded impurities leads to significant tungsten erosion in the divertor. In general, tungsten erosion, self-sputtering and deposition increase by factors larger than 50 at the main wall and 5000 in the divertor compared to pure deuterium plasma.
Subject
Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献