Physicochemical properties and AC magnetic field induced heating properties of solvothermally prepared thiospinel: Fe3S4 (greigite) nanoparticles

Author:

Aarathy A R,Lahiri B BORCID,Pillai S SavithaORCID,Philip JohnORCID

Abstract

Abstract The presence of greigite (Fe3S4) nanoparticles in bacterial magnetosomes, and its lower toxicity have emerged as favourable aspects for its potential applications in various bio-medical applications, including magnetic hyperthermia. Despite having a number of intriguing features, systematic research on the heating efficiency of Fe3S4 nanoparticles (MNPs) in an AC magnetic field is scarce, which is primarily due to the difficulties in preparing phase pure greigite MNPs. In this study, greigite MNPs are prepared using a solvothermal approach, utilizing ethylene glycol as a solvent, and surface functionalized with varied concentrations of poly vinyl alcohol (PVA). Studies using powder x-ray diffraction and electron microscopy demonstrate the development of crystalline Fe3S4 MNPs (average crystallite size: 19–23 nm) with flaky or flower-like morphology. X-ray photoelectron spectroscopy indicates that the lattice is composed primarily of iron and sulphur. The existence of bio-compatible PVA polymer on the surface of the coated MNPs is confirmed using Fourier transform infrared spectroscopy. For the uncoated MNPs, the magnetization at 90 kOe and the effective anisotropy energy density values are found to be ∼ 15.2 emu g−1 and ∼ 22.3 kJ m−3, respectively. Due to the improved colloidal stability, magneto-calorimetric experiments reveal higher AC magnetic field induced heating efficiency for the PVA-coated MNPs. The highest specific absorption rate (SAR) is obtained as ∼ 67.8 ± 2.6 W/gFe in the current study, which is several times higher than the previously published values for synthetic Fe3S4 MNPs. Furthermore, for samples with comparable saturation magnetization and crystallite size, SAR is found to increase with initial susceptibility. The in vitro cytotoxicity studies show good bio-compatibility for the prepared greigite MNPs. The experimental findings provide deeper insights into the preparation of Fe3S4 MNPs using a simple solvothermal technique, and its AC magnetic field induced heating efficiency.

Funder

University Grants Commission

Publisher

IOP Publishing

Subject

Condensed Matter Physics,Mathematical Physics,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3