Optimizing deep learning-based piled-up pulse height correction method for high radiation-field application

Author:

Kim W.,Ko K.,Lee S.,Park J.,Song G.,Lim K.,Cho G.

Abstract

Abstract In high-radiation environments, measured pile-up pulses can lead to unavoidable issues such as total count loss and spectrum distortion. Additionally, the recording of large volumes of data within a short period makes real-time processing difficult. In this study, a deep learning-based pulse height estimation (PHE) method was optimized to perform pile-up signal correction in high-radiation fields. First, we adopted a previous deep-learning-based PHE method that allows for fast correction without being restricted to specific detectors. However, the peak-finding method was slightly modified to improve the count restoration rate. Moreover, the input data length of the deep learning model was optimized for convolutional neural networks (CNN) and deep neural networks (DNN) to achieve the maximum correction performance using minimal input data. A series of single pulses was experimentally obtained from a LaBr3 detector with a short decay time to prepare a dataset for training the deep learning models. The pile-up signals were generated by randomly synthesizing single pulses. Samples around their peaks were sliced using the peak-finding method and used as input data for the deep learning models. As a result of the optimization, the modified peak-finding method improved the count restoration rate compared to the previous method by effectively detecting the peaks of tail pile-up, and peak pile-up pulses. Furthermore, the input data length and region were optimized based on the performance evaluation of each deep learning model. Despite having a simpler architecture than the CNN model, the DNN model demonstrated excellent PHE performance. The results of this study showed the efficient and practical considerations necessary for applying pile-up signal correction in high-radiation fields.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3