Piled-up neutron-gamma discrimination system for CLLB using convolutional neural network

Author:

Peng S.,Hua Z.H.,Wu Q.,Han J.F.,Qian S.,Wang Z.G.,Wei Q.H.,Qin L.S.,Ma L.S.,Yan M.,Song R.Q.

Abstract

Abstract A piled-up neutron-gamma discrimination system is designed to discriminate single and piled-up events under high counting rate. The data acquired by a Cs2LiLaBr6:Ce (CLLB) detector and an Am-Be neutron source are used to train and test the model in the n-γ discrimination system. The charge comparison method is applied to discriminate the non-piled-up events in the experimental data and label the dataset of single events. As a result of the method, the figure-of-merit (FOM) value is 1.10, which indicates that the wrong labeling ratio is about 0.248%. A dataset of piled-up events is created by adding up waveforms and labels of the events in the single-pulse dataset. The discrimination system consists of three convolutional models, called Model_PulseNum, Model_OnePulse and Model_TwoPulses. All the models are trained and tested by the created dataset. Model_PulseNum is created and trained to define the number of pulses in the waveform of the event, with an accuracy of 99.94%. The other two models (Model_OnePulse and Model_TwoPulses) are created and trained to discriminate the particle types for non-piled-up and two-fold piled-up events with the accuracy of 99.5% and 98.6%, respectively. For the whole discrimination system, the accurcy for the particle identification is over 97% for each class (γ, n, γ + γ, γ + n, n + γ and n + n). These results indicate that CNN model can improve the performance of particle detection systems by effectively discriminate neutron and gamma for both piled-up and non-piled-up events under high counting rates.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3