Comparative assessment of passive scattering and active scanning proton therapy techniques using Monte Carlo simulations

Author:

Asadi A.,Hosseini S.A.,Akhavanallaf A.,Vosoughi N.,Zaidi H.

Abstract

Abstract Background: in this study, two proton beam delivery designs, i.e. passive scattering proton therapy (PSPT) and pencil beam scanning (PBS), were quantitatively compared in terms of dosimetric indices. The GATE Monte Carlo (MC) particle transport code was used to simulate the proton beam system; and the developed simulation engines were benchmarked with respect to the experimental measurements. Method: a water phantom was used to simulate system energy parameters using a set of depth-dose data in the energy range of 120–235 MeV. To compare the performance of PSPT against PBS, multiple dosimetric parameters including Bragg peak width (BP W50), peak position, range, peak-to-entrance dose ratio, penumbra(90-10)%, penumbra(80-20)%, M 95% and dose volume histogram have been analyzed under the same conditions. Furthermore, the clinical test cases introduced by AAPM TG-119 were simulated in both beam delivery modes to compare the relevant clinical values obtained from Dose Volume Histogram (DVH) analysis. Results: the parametric comparison in the water phantom between the two techniques revealed that the value of peak-to-entrance dose ratio in PSPT is considerably higher than that from PBS by a factor of 8%. In addition, the BP_W50, penumbra(90-10)%, penumbra(80-20)%, and M 95% in PSPT was increased by a factor of 7, 51, 37, and 2.7%, respectively compared to the corresponding value obtained from PBS model. TG-119 phantom simulations showed that the difference of PTV mean dose between PBS and PSPT techniques are up to 1.8% while the difference of max dose to organ at risks (OARs) exceeds 50%. Conclusion: the results of this simulation show that although the passive scattering design method has a slightly higher ability to adjust the dose in target volume, but the active scanning proton therapy systems was superior in dose painting, and lower out-of-field dose compared to passive scattering design.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Shielding Performance Assessment of B2O3-Bi2O3-Zno-Li2O Glasses for Gamma Radiation;2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC);2022-11-05

2. Dosimetric Comparison of Passive Scattering and Active Scanning Proton Therapy Methods using GATE Simulations;2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC);2022-11-05

3. Development of the Theoretical Relationship between the Electron Paramagnetic Resonance (EPR) Intensity and Absorbed Dose by Alanine;2022 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC);2022-11-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3