Design and simulation of 2450 MHz microwave cavity for resonance and off-resonance plasma diagnosis in-situ plasma irradiation facility

Author:

Swaroop Ram,Kumar Narender,Sabavath Gopikishan,Choudhary Virendra Singh,Jewariya Yogesh,Rodrigues G.

Abstract

Abstract The microwave plasma diagnosis in-situ irradiation system has been developed at the Central University of Punjab, Bathinda. The final design is achieved by a combination of analytical and simulation methods using CST and Comsol Multiphysics software. Simulations outcome reveals the electric field profile at the center of the microwave plasma chamber is strong and dense. A strong electric field profile inside the microwave cavity has been verified by the confinement of the plasma in the absence of an external magnetic field. The magnetic field profile for the 2450 MHz microwave facility is simulated and confirmed experimentally. Different RF powers and working gas pressures have been used with Langmuir probes to record the plasma signal. As a second stage, we studied the practicality of using a plasma cavity to treat materials with plasma for materials science experiment in plasma environment. This work shows the results of a thorough computational analysis of a microwave plasma source that has been tested in lab.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3