Author:
Anderson T.,Anderssen E.,Askins M.,Bacon A.J.,Bagdasarian Z.,Baldoni A.,Barros N.,Bartoszek L.,Bergevin M.,Bernstein A.,Blucher E.,Boissevain J.,Bonventre R.,Brown D.,Callaghan E.J.,Cowen D.F.,Dazeley S.,Diwan M.,Duce M.,Fleming D.,Frankiewicz K.,Gooding D.M.,Grant C.,Juechter J.,Kaptanoglu T.,Kim T.,Klein J.R.,Kraus C.,Kroupová T.,Land B.,Lebanowski L.,Lozza V.,Marino A.,Mastbaum A.,Mauger C.,Mayers G.,Minock J.,Naugle S.,Newcomer M.,Nikolica A.,Orebi Gann G.D.,Pickard L.,Ren L.,Rincon A.,Rowe N.,Saba J.,Schoppmann S.,Sensenig J.,Smiley M.,Song H.,Steiger H.,Svoboda R.,Tiras E.,To W.H.,Trzaska W.H.,Van Berg R.,Veeraraghavan V.,Wallig J.,Wendel G.,Wetstein M.,Wurm M.,Yang G.,Yeh M.,Zimmerman E.D.
Abstract
Abstract
Eos is a technology demonstrator, designed to
explore the capabilities of hybrid event detection technology,
leveraging both Cherenkov and scintillation light simultaneously.
With a fiducial mass of four tons, Eos is designed to
operate in a high-precision regime, with sufficient size to utilize
time-of-flight information for full event reconstruction,
flexibility to demonstrate a range of cutting edge technologies, and
simplicity of design to facilitate potential future deployment at
alternative sites. Results from Eos can inform the design
of future neutrino detectors for both fundamental physics and
nonproliferation applications. This paper describes the conceptual
design and potential applications of the Eos detector.
Subject
Mathematical Physics,Instrumentation