Author:
Barbisan M.,Agnello R.,Cavenago M.,Delogu R.S.,Pimazzoni A.,Balconi L.,Barbato P.,Baseggio L.,Castagni A.,Pouradier Duteil B.,Franchin L.,Laterza B.,Molon F.,Maniero M.,Migliorato L.,Milazzo R.,Passalacqua G.,Poggi C.,Ravarotto D.,Rizzieri R.,Romanato L.,Rossetto F.,Trevisan L.,Ugoletti M.,Zaniol B.,Zucchetti S.
Abstract
Abstract
Consorzio RFX and INFN-LNL have designed, built and operated the compact radiofrequency negative ion source NIO1 (Negative Ion Optimization phase 1) with the aim of studying the production and acceleration of H- ions. In particular, NIO1 was designed to keep plasma generation and beam extraction continuously active for several hours. Since 2020 the production of negative ions at the plasma grid (the first grid of the acceleration system) has been enhanced by a Cs layer, deposited though active Cs evaporation in the source volume. For the negative ion sources applied to fusion neutral beam injectors, it is essential to keep the beam current and the fraction of co-extracted electrons stable for at least 1 h, against the consequences of Cs sputtering and redistribution operated by the plasma. The paper presents the latest results of the NIO1 source, in terms of caesiation process and beam performances during continuous (6 ÷ 7 h) plasma pulses. Due to the small dimensions of the NIO1 source (20 cm×∅10 cm), the Cs density in the volume is high (1015 ÷ 1016 m-3) and dominated by plasma-wall interaction. The maximum beam current density and minimum fraction of co-extracted electrons were respectively about 30 A/m2 and 2. Similarly to what done in other negative ion sources, the plasma grid temperature in NIO1 was raised for the first time, up to 80 °C, although this led to a minimal improvement of the beam current and to an increase of the co-extracted electron current.
Subject
Mathematical Physics,Instrumentation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献