Modeling electron transport and multiplication in photomultiplier tubes using COMSOL Multiphysics®

Author:

Beavers J.,Huddleston K.,Hines N.,McNeil W.

Abstract

Abstract Combining stochastic and finite element methods, a modeling approach was executed that will inform new photomultiplier tube and scintillation detector designs. Time-dependent signal formation within a commercially available photomultiplier tube was modeled including the release and transport of electrons from the photocathode through the dynode stages. An ET Enterprises 9214B photomultiplier tube was digitally reproduced using Computed Tomography, X-ray radiography, and SolidWorks solid-modeling software. Simulations were executed with COMSOL Multiphysics® finite element solving package. Stochastic models of electron emission from the photocathode and dynodes were integrated within the COMSOL framework. Photoelectron emission energy was modeled by combining NaI(Tl) spectral emission characteristics and K2CsSb photocathode quantum efficiency. Secondary electron emission yields were produced to follow nominal photomultiplier gain, while secondary electron energies were sampled from the Chung-Everhart distribution. Electron emission trajectories were sampled according to Lambert's cosine law. Coupling stochastic and finite element models, simulation reproduced signal formation for the commercial photomultiplier tube including timing characteristics within 9.5% and gain within 3% over a voltage range of 900–1250 V.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3