Automatic detection of scintillation light splashes using conventional and deep learning methods

Author:

Jiang Y.,Bugby S.L.,Cosma G.

Abstract

Abstract Six methods for the automatic detection of scintillation light splashes in a portable gamma camera are compared. Each imaging frame might contain any number of light splashes (including none), and the location and size of each light splash must be identified. For real-time imaging, splashes must be identified and characterised quickly and with minimal processing overhead. The techniques are compared on their ability to accurately determine the number, position, and size of light splashes, and to reconstruct the deposited energy within each splash for a simulated data set with known ground-truths. The speed of each technique and the ease of implementation are also discussed. For accuracy in blob (light splash) localisation, a Laplacian of Gaussian approach was found to provide the most accurate estimation. However, its performance greatly relies on the appropriate tuning of preprocessing parameters prior to image analysis and the number of blobs in each frame. Deep learning approaches (Faster-RCNNs) performed significantly better than traditional algorithms in terms of predicting the size of each light splash, did not require image preprocessing and were also more stable over a range of frame occupancies. Moreover, the paper fine-tuned a VGG16 based Faster-RCNN model with the simulated data set for the scintillation light splash detection, called DeepSplashSpotter (DSS).

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3