A novel nuclear emulsion detector for measurement of quantum states of ultracold neutrons in the Earth's gravitational field

Author:

Muto N.,Abele H.,Ariga T.,Bosina J.,Hino M.,Hirota K.,Ichikawa G.,Jenke T.,Kawahara H.,Kawasaki S.,Kitaguchi M.,Micko J.,Mishima K.,Naganawa N.,Nakamura M.,Roccia S.,Sato O.,Sedmik R.I.P.,Seki Y.,Shimizu H.M.,Tada S.,Umemoto A.

Abstract

Abstract Hypothetical short-range interactions could be detected by measuring the wavefunctions of gravitationally bound ultracold neutrons (UCNs) on a mirror in the Earth's gravitational field. Searches for them with higher sensitivity require detectors with higher spatial resolution. We developed and have been improving an UCN detector with a high spatial resolution, which consists of a Si substrate, a thin converter layer including ^10B_4C, and a layer of fine-grained nuclear emulsion. Its resolution was estimated to be less than 100 nm by fitting tracks of either ^7Li nuclei or α-particles, which were created when neutrons interacted with the ^10B_4C layer. For actual measurements of the spatial distributions, the following two improvements were made. The first improvement was to establish a method to align microscopic images with high accuracy within a wide region of 65 mm × 0.2 mm. We created reference marks of 1 μm and 5 μm diameter with an interval of 50 μm and 500 μm, respectively, on the Si substrate by electron beam lithography and realized a position accuracy of less than 30 nm. The second improvement was to build a holder for the detector that could maintain the atmospheric pressure around the nuclear emulsion to utilize it under a vacuum during exposure to UCNs. The intrinsic resolution of the improved detector was estimated to be better than 0.56(8) μm by evaluating the blur of a transmission image of a gadolinium grating taken by cold neutrons. The evaluation included the precision of the gadolinium grating. A test exposure was conducted to obtain the spatial distribution of UCNs in the quantized states on a mirror in the Earth's gravitational field. The distribution was obtained, fitted with the theoretical curve, and turned out to be reasonable for UCNs in quantized states when we considered a blurring of 6.9 μm. The blurring was well explained as a result of neutron refraction due to the large surface roughness on the upstream side of the Si substrate. By using a double-side-polished Si substrate, a resolution of less than 0.56 μm is expected to be achieved for UCNs.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Search for Dark Energy with Neutron Interferometry;Progress of Theoretical and Experimental Physics;2024-01-25

2. Green’s function analysis of the neutron Lloyd interferometer;Zeitschrift für Naturforschung A;2023-05-11

3. Investigation of neutron imaging applications using fine-grained nuclear emulsion;Journal of Applied Physics;2023-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3