Machine learning for precise hit position reconstruction in Resistive Silicon Detectors

Author:

Siviero F.,Arcidiacono R.,Cartiglia N.,Costa M.,Ferrero M.,Lanteri L.,Madrid C.,Menzio L.,Mulargia R.,Sola V.

Abstract

Abstract RSDs are LGAD silicon sensors with 100% fill factor, based on the principle of AC-coupled resistive read-out. Signal sharing and internal charge multiplication are the RSD key features to achieve picosecond-level time resolution and micron-level spatial resolution, thus making these sensors promising candidates as 4D-trackers for future experiments. This paper describes the use of a neural network to reconstruct the hit position of ionizing particles, an approach that can boost the performance of the RSD with respect to analytical models. The neural network has been trained in the laboratory and then validated on test beam data. The device-under-test in this work is a 450 μm-pitch matrix from the FBK RSD2 production, which achieved a resolution of about 65 μm at the DESY Test Beam Facility, a 50% improvement compared to a simple analytical reconstruction method, and a factor two better than the resolution of a standard pixel sensor of equal pitch size with binary read-out. The test beam result is compatible with the laboratory ones obtained during the neural network training, confirming the ability of the machine learning model to provide accurate predictions even in environments very different from the training one. Prospects for future improvements are also discussed.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3