A laserball calibration device for the SNO+ scintillator phase

Author:

Valder S.,Gibson-Foster A.,Falk E.,Peeters S.J.M.,Mills C.,Nirkko M.,Rigan M.,Sinclair J.

Abstract

Abstract Located 2 km underground in SNOLAB, Sudbury, Canada, SNO+ is a large scale liquid scintillator experiment that primarily aims to search for neutrinoless double beta decay. Whilst SNO+ has light and radioactive calibration sources external to the inner volume, an internally deployed optical source is necessary for the full characterization of the detector model. A laser diffuser ball developed for SNO has previously demonstrated to be an effective optical calibration device for both SNO and SNO+ water phase. Since the introduction of liquid scintillator for SNO+, the material compatibility, cleanliness, and radiopurity requirements of any materials in contact with the internal medium have increased. Improving on the original SNO laserball design, a new laserball calibration device has been developed for the SNO+ scintillator phase with the goal of measuring the optical properties of the detector and performing routine PMT gain and timing calibrations. Simulations have been written to model the diffusion properties to optimise optical and temporal performance for calibration. Prototype laserballs have been built and characterised, demonstrating sub-ns timing resolution and a quasi-isotropic light distribution.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference21 articles.

1. The Sudbury neutrino observatory;SNO Collaboration;Nucl. Instrum. Meth. A,2000

2. The SNO+ experiment;SNO+ Collaboration;JINST,2021

3. Neutrinoless Double Beta Decay with SNO+;SNO+ Collaboration;J. Phys. Conf. Ser.,2012

4. Optical calibration of the SNO+ detector in the water phase with deployed sources;SNO+ Collaboration;JINST,2021

5. Calibration of SNO for the detection of (8)B neutrinos;Ford,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3