Optimization of low-noise read-out electronics for high energy resolution X-ray strip detectors

Author:

Zubrzycka W.,Grybos P.

Abstract

Abstract Semiconductor strip sensors applied as solid-state radiation or particle detectors can be used in radiation detection and measurement for various applications in particle physics experiments, X-ray imaging (e.g. medical), or material science. The X-ray imaging devices with spectroscopic and position resolution features are a very important research topic at many institutes and companies worldwide. Short strip silicon detectors are good candidates for X-ray spectroscopy, because of their relatively small capacitance and leakage current. If additionally, strip pitch is below 100 μm, then the high spatial resolution is also possible. In this paper, the analysis and noise optimization of the read-out electronics for short silicon strip detectors with Charge Sensitive Amplifier (CSA) and shaping amplifier (shaper) is presented. The CSA is optimized for the detector capacitance of around 1.5 pF, and the shaper nominal peaking time is about 1 μs (controlled by the sets of switches). We take into account the sources of noise in a radiation imaging system (current parallel noise, voltage series noise, and 1/f or flicker series noise) both internal (related to the front-end electronics itself) but also external, stemming from a sensor, interconnect, or printed circuit board parasitic components. We target the noise level below 40 el. rms, considering low power consumption (a few mW) and limited channel area.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference7 articles.

1. Prospects for charge sensitive amplifiers in scaled CMOS;O’Connor;Nucl. Instrum. Meth. A,2002

2. Front-end electronics for imaging detectors;De Geronimo;Nucl. Instrum. Meth. A,2001

3. Noise considerations for the STS/MUCH readout ASIC;Zubrzycka,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detektorentwicklung für die Teilchenphysik;e+i Elektrotechnik und Informationstechnik;2024-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3