Simulation study for an in-situ calibration system for the measurement of the snow accumulation and the index-of-refraction profile for radio neutrino detectors

Author:

Beise J.,Glaser C.

Abstract

Abstract Sensitivity to ultra-high-energy neutrinos (E > 17 eV) can be obtained cost-efficiently by exploiting the Askaryan effect in ice, where a particle cascade induced by the neutrino interaction produces coherent radio emission that can be picked up by antennas. As the near-surface ice properties change rapidly within the upper 𝒪(100 m), a good understanding of the ice properties is required to reconstruct the neutrino properties. In particular, continuous monitoring of the snow accumulation (which changes the depth of the antennas) and the index-of-refraction n(z) profile are crucial for an accurate determination of the neutrino's direction and energy. We present an in-situ calibration system that extends the radio detector station with two radio emitters to continuously monitor the firn properties within the upper 40 m by measuring the time differences between direct and reflected (off the surface) signals (D'n'R). We determine the optimal positions of two transmitters at all three sites of current and future in-ice radio detectors: Greenland, Moore's Bay, and the South Pole. For the South Pole we find that the snow accumulation Δh can be measured with a resolution of 3 mm and the parameters of an exponential n(z) profile α and  z 0 with 0.04% and 0.14% precision respectively, which constitutes an improvement of more than a factor of 10 as compared to the inference of the n(z) profile from density measurements. Additionally, as this technique is based on the measurement of the signal propagation times we are not bound to the conversion of density to index-of-refraction. We quantify the impact of these ice uncertainties on the reconstruction of the neutrino vertex, direction, and energy and find that the calibration device measures the ice properties to sufficient precision to have negligible influence.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference41 articles.

1. Astrophysics Uniquely Enabled by Observations of High-Energy Cosmic Neutrinos;Ackermann;Bull. Am. Astron. Soc.,2019

2. Fundamental Physics with High-Energy Cosmic Neutrinos;Ackermann;Bull. Am. Astron. Soc.,2019

3. The extragalactic optical-infrared background radiations, their time evolution and the cosmic photon-photon opacity;Franceschini;Astron. Astrophys.,2008

4. Cosmic rays at ultrahigh-energies (neutrino?);Berezinsky;Phys. Lett. B,1969

5. Cosmic rays in galactic and extragalactic magnetic fields;Aharonian;Space Sci. Rev.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Developing new analysis tools for near surface radio-based neutrino detectors;Journal of Cosmology and Astroparticle Physics;2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3