Author:
Tingey Josh,Bash Simeon,Cesar John,Dodwell Thomas,Germani Stefano,Kooijman Paul,Mánek Petr,Ozkaynak Mustafa,Perch Andy,Thomas Jennifer,Whitehead Leigh
Abstract
Abstract
This work presents a novel approach to water Cherenkov neutrino detector event reconstruction and classification. Three forms of a Convolutional Neural Network have been trained to reject cosmic muon events, classify beam events, and estimate neutrino energies, using only a slightly modified version of the raw detector event as input. When evaluated on a realistic selection of simulated CHIPS-5kton prototype detector events, this new approach significantly increases performance over the standard likelihood-based reconstruction and simple neural network classification.
Subject
Mathematical Physics,Instrumentation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献