PetaVolts per meter Plasmonics: introducing extreme nanoscience as a route towards scientific frontiers

Author:

Sahai Aakash A.,Golkowski Mark,Gedney Stephen,Katsouleas Thomas,Andonian Gerard,White Glen,Stohr Joachim,Muggli Patric,Filippetto Daniele,Zimmermann Frank,Tajima Toshiki,Mourou Gerard,Resta-Lopez Javier

Abstract

Abstract A new class of plasmons has opened access to unprecedented PetaVolts per meter electromagnetic fields which can transform the paradigm of scientific and technological advances. This includes non-collider searches in fundamental physics in addition to making next generation colliders feasible. PetaVolts per meter plasmonics relies on this new class of plasmons uncovered by our work in the large amplitude limit of collective oscillations of quantum electron gas. This Fermi gas constituted by “free” conduction band electrons is inherent in conductive media endowed with a suitable combination of constituent atoms and ionic lattice structure. As this quantum gas of electrons can be as dense as 1024 cm-3, the coherence limit of plasmonic electromagnetic fields is extended in our model from the classical to the quantum domain, 0.1 √(n 0(1024 cm-3)) PVm-1. Appropriately engineered, structured materials that allow highly tunable material properties also make it possible to overcome disruptive instabilities that dominate the interactions in bulk media. The ultra-high density of conduction electrons and the existence of electronic energy bands engendered by the ionic lattice is only possible due to quantum mechanical effects. Based on this framework, it is critical to address various challenges that underlie PetaVolts per meter plasmonics including stable excitation of plasmons while accounting for their effects on the ionic lattice and the electronic energy band structure over femtosecond timescales. We summarize the challenges and ongoing efforts that set the strategy for the future. Extreme plasmonic fields can shape the future by not only opening the possibility of tens of TeV to multi-PeV center-of-mass-energies but also enabling novel pathways in non-collider HEP. In view of this promise, our efforts are dedicated to realization of the immense potential of PV/m plasmonics and its applications.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3