Design, fabrication and large scale qualification of cosmic muon veto scintillator detectors

Author:

Saraf Mandar,Chinnappan Pandi Raj,Deodhar Aditya,Jangra Mamta,Krishnamoorthi J.,Majumder Gobinda,Padmavathy Veera,Ravindran K.C.,Shah Raj,Shinde Ravindra,Satyanarayana B.

Abstract

Abstract The INO collaboration is designing a cosmic muon veto detector (CMVD) to cover the mini-ICAL detector which is operational at the IICHEP transit campus, Madurai in South India. The aim of the CMVD is to study the feasibility of building an experiment to record rare events at a shallow depth of around 100 m, and use plastic scintillators to veto atmospheric muons from those produced by the rare interactions within the target mass of the detector. The efficiency of such a veto detector should be better than 99.99% and false positive rate should be less than 10-5. The CMVD is being built using extruded plastic scintillator (EPS) strips to detect and tag atmospheric muons. More than 700 EPS strips are required to build the CMVD. Two EPS strips are pasted together to make a di-counter (DC) and wavelength shifting fibres are embedded inside the EPS strips to trap the scintillation light generated by a passing cosmic ray muon and transmit it as secondary photons to the Silicon Photo-Multipliers (SiPMs) mounted at the two ends of the DCs. Since the efficiency requirement of the veto detector is rather high, it is imperative to thoroughly test each and every component used for building the CMVD. A cosmic ray muon telescope has been setup using the DCs to qualify all the DCs that will be fabricated. In this paper we will discuss the details of the design and fabrication of the DCs, the cosmic muon setup and the electronics used for their testing and the test results.

Publisher

IOP Publishing

Subject

Mathematical Physics,Instrumentation

Reference11 articles.

1. Invited review: Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO)

2. Perspectives of Experimental Neutrino Physics in India;Narasimham;Proc. Indian Natl. Sci. Acad. A,2004

3. Low-cost extruded plastic scintillator;Pla-Dalmau;Nucl. Instrum. Meth. A,2001

4. The performance of a new Kuraray wavelength shifting fiber YS-2

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3